
The genetics of behavior

Tuan Cao EEB, U. of Arizona

sneaky Who's Who

Charles Darwin

- Born February 12, 1809
- Dropped out of medical school at 18
- Graduated from the University of Cambridge at 22 (degree in theology)
- Voyage of the Beagle (1931-1936)
- On the Origin of Species (1859)
- Natural selection ('gemmules')
- Unifying theory of evolution

What are genes?

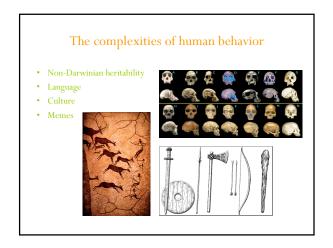
Genetic basis for behavior

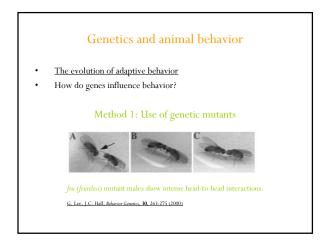
Bonobos (Pan paniscus)

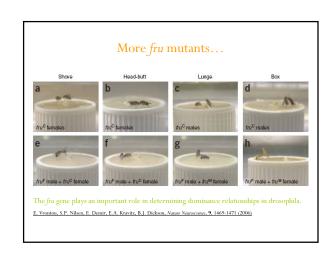
- Behavior is species specific
- Behaviors often breed true
- Behaviors change in response to alteration in DNA (i.e. genes)
- Behavior shows phyletic relationships
- In humans, some behaviors run in

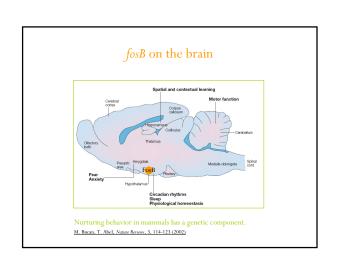
Nature and nurture

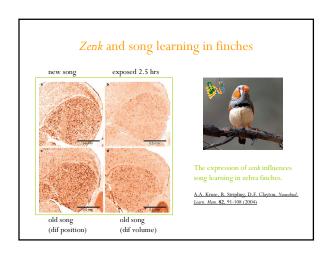
- (Most) behaviors have a genetic basis
- How much of behavior is influenced by genetics?
- By the environment?

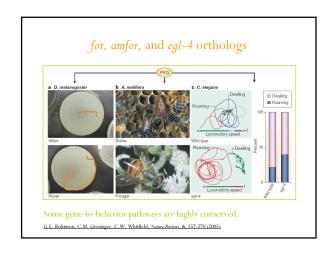


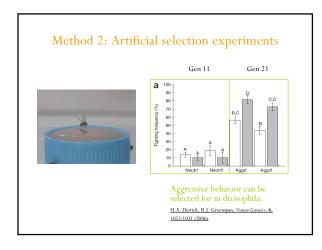

Behavioral genetics

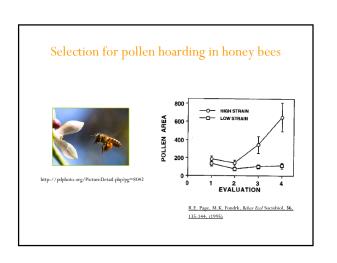

- Sir Francis Galton: Hereditary Genius (1869)
- "A man's natural abilities are derived by inheritance, under exactly the same limitations as are the form and physical features of the whole organic world."
- Searched for Darwin's gemmules
- Behaviors involve multiple genes (quantitative traits)
- Difficult to isolate individual genes
- Quantifying heritability

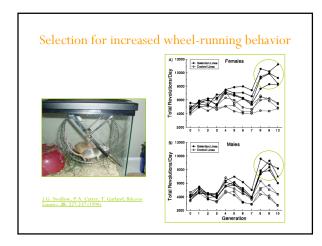

Heritability of human behavioral traits IQ adult Reading disability Personality Schizophrenia Major depression Autism Hyperactivity Identical twins end up similar even when reared apart. P. McGuffin, B. Riley, R. Plomin, Science, 291, 1232-1249 (2001)

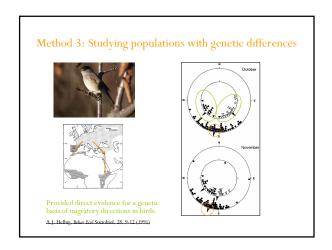


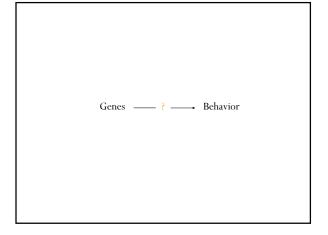


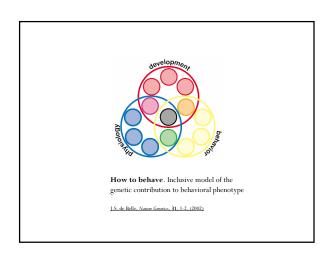


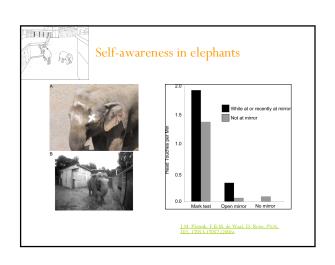

Genetics and insect sociality

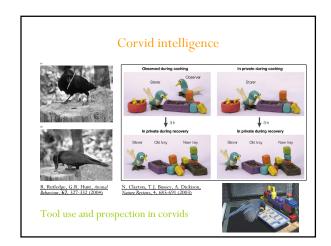

- Haplodiploidy
- Haploid males, diploid females
- Females (r=0.75)
- Female and daughter (r=0.5)
- Female and daug
 Br C > 0
- Kin selection
- Worker sterility
- Eusociality

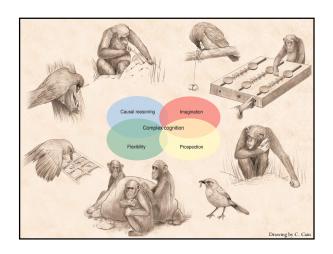


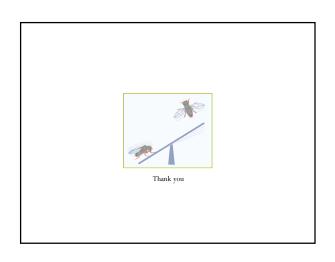

Table 1 Examples of social beh	aviours studied from a	molecular perspective		
Behaviour	Organism	Gene	Molecular function	Reference
Foreging				
Rover versus etter phenotype	Drosophila melanogsster	foraging	Protein Kinase Gi	
Roamer versus develor phenotype	Caerorhabdtis elegans	egl-4 (egg-leying defective 4)	Protein kinase G	- 1
Division of labour; onset age of foraging	Apis melifera	foraging	Protein Kinase G	1
Division of labour: onset age of foraging	A.melfera	malvolio	Manganese transporter	11
Division of bibour: foreging related?	A. melifora.	period	Transcription cofactor	8
Division of labour: foreging related?	A.meldera	ace (acetylcholine esterase)	Acetylcholine esterase	70
Division of labour: foreging related?	A. melifera	IP(3)K (inosital 1,3,5 triphosphate kinase)	Inositol signaling	71
Division of labour: excerine gland function	A mellina	Royal jely protein	Secreted nutritive protein	72,73
Foreging specialization: nectar versus polien	A melifera	Protein kinase C	Protein kinase C	124
Social feeding	D. melsnogsster	npf (neuropeptide F)	Neuropeptide Y (NPY) homolog	3.00 X
Social feeding (aggregation)	C. alegans	npr-f (neuropeptide-receptor femily f)	Receptor for NPY	21,23
Mate recognition and courtship				
Vocal learning, vocalization	Taeniopygie guttata; Homo aspiene	FC9P2 (winged halk/forthead protein)	Transcription factor	26-29
Vocal learning, song recognition	T. guetteta	zonk (21/2/69/Egr1/ NGFA/Krox24); others	Transcription factor; other functions	30-34,125
Pheromone-mediated communication	Mus musculus domesticus	V1R, V2R (vomeroness) receptor, families 1 and 2)	G-protein receptors	36
Pheromone-mediated communication	D. melanogaster	Gr68a (Gustatory receptor 69a)	G-protein receptor	120
Pheromone-mediated communication	Bombyx mori	BrnOR1 (olfactory receptor 1)	G-protein receptor	127
Male-courtship	D. melanogaster	fulfess; others	Transcription factor; other functions	116; other genes in 8
Male-courtship: timing of mating	D. melanogaster	period	Transcription cofactor	128,129
Female receptiveness (lordosis)	Rodents	Oestrogen responsive genes	Various functions	115,130
Post-mating behaviour				
Refractoriness to mate, oxipositioning, decreased longovity	D. melanogaster	Genes for seminal proteins	Various functions	131
Monogamy, perental care	Rodents	V1sR, OTR (vasopression receptor)	Viscopressin and crytocin receptors	85,121,123
Maternal care	Rettus norvegicus	GR (glucocarticoid receptor)	Glacocorticoid receptor	36,37
Attachment to mother	M.m. domesticus	Orpm (opioid receptor-yi)	Opioid receptor	122
Maternal care, pup retrieval	M.m. domesticus	Dith (doparnine β-hydroxylase)	Biosynthesis of nospinephine and epinephine	192
Social hierarchies				
Territorial versus non-territorial males	Maplochromis burtoni	GnRHT (gonadotropin releasing hormone f)	Gonadotropin-releasing hormone	45-48
Dominant versus subordinate males	Procemberus clarkii	5HTR1, -2 (serotonin receptor type I and 2)	Serotonin receptors	51
Dominance interactions				
Aggression	M.m. domesticus	Mace (monograine coidsae A)	Monoamine coidsee	53
Aggression	Macace mulatta	5HTT (serotonin transporter)	Serotonin transporter	38
Subordinate behaviour	M.m. dorresticus	Dv7 (disheveled)	Writ-moretor signaling pathwa	











Maybe genes can't explain every behavior

